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No “Bias” Toward the Null Hypothesis in Most
Conventional Multipoint Nonparametric Linkage
Analyses

To the Editor:

We would like to comment on the Schork and Green-
wood (2004) article dealing with the inherent “bias”
toward the null hypothesis in the context of nonpara-
metric linkage analysis. The authors point out that, in
certain situations, a loss of evidence for linkage can re-
sult from the practice of assigning expected allele-sharing
values to affected relative pairs that are uninformative
for their identity-by-descent (IBD) status. They ex-
plained this by setting up a likelihood function and stud-
ying its properties by simulation, clearly illustrating the
negative impact of using expected IBD values for un-
informative pairs. However, we would like to point out
that their likelihood does not reflect how the majority
of nonparametric linkage analysis programs compute
statistics in practice. Indeed, the “problem™ has been
known and well discussed for years. Some of the con-
cerns we discuss here have also been raised by Cordell
(2004).

Schork and Greenwood (2004) set up the likelihood
formulation as follows. Let 7, be the number of sib pairs
sharing 7 alleles IBD (i = 0, 1, or 2). If all families had
unambiguous IBD sharing, then the LOD score eval-
uated at the sharing vector (p,, p,, p,) is calculated as
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LOD = log, {0.25"0 0.50" 0.25”2}

= n,log,,(4p,)+n,log,,(2p,) + n,log,, (4p,) . (1)

In their model, Schork and Greenwood (2004) said that
fully uninformative sibling pairs contribute 0.25, 0.50,
and 0.25, respectively, to the counts 7, 7,, and 7, used
in equation (1). If so, then the presence of uninformative
sib pairs can lower the LOD score. However, in most
software implementations, expected allele-sharing val-
ues are not used to compute nonparametric LOD scores.
For example, consider the maximum LOD score (MLS)
statistic proposed by Risch (1990). Let w;, be the prob-
ability of the observed marker phenotypes of the pair,
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given that they share 7 alleles IBD (i = 0, 1, or 2). Then,
the likelihood of the observed marker data for the pair
is given by

2
L= Ewipi ,
i=o

where p, is the posterior probability that the pair shares
i alleles IBD, given that both members of the pair are
affected. Suppose, in addition, that we know that 7, ,
pairs share either 2 or 1 alleles, 7, , pairs share either 2
or 0 alleles, 7, , pairs share either 1 or 0 alleles, and 7,,
is the number of pairs that are fully uninformative. Ac-
cording to Risch (1990), the LOD score can be written
as

LOD = #, 10g10(4po) +ny loglo(ZPl) +n, 10g10(4pz)
tn,, 10g10(2p2 + pl) +1,, loglo [2(172 + po)]

tn, loglo(pl + 2py) +n,, 10g10(p0 +p+p) .

Maximizing this likelihood gives consistent and asymp-
totically unbiased estimates of the IBD-sharing proba-
bilities. Cordell (2004) confirms this by simulation.

To verify that most implementations of nonparametric
linkage statistics are not altered by uninformative fam-
ilies, we used FastSLINK (Ott 1989; Weeks et al. 1990;
Cottingham et al. 1993) to simulate 200 fully genotyped
affected—sib-pair families under disease model 1 of
Schork and Greenwood (2004). The disease locus was
completely linked to a two-allele marker with equally
frequent alleles. We then used a variety of programs to
compute linkage statistics on two data sets: (1) all 200
families and (2) the 147 families that remained after
removal of the fully uninformative families. As shown
in table 1, the majority of the linkage statistics, as im-
plemented in widely used software, are exactly the same
for the two data sets.

There are two statistics in table 1 that are less signif-
icant when all 200 families are used than when the un-
informative families are removed. These two statistics
are the GeneHunter NPL S, Z score and the SIBPAL
mean test Z value. In both of these cases, the reduction
in evidence for linkage is caused by the use of the “per-
fect data approximation” to compute the variance of the
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Table 1
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Comparison of Linkage Statistics Analyses Using All 200 Families and Using Only the 147 Informative

Families

RESULT FOR

147 Informative

STATISTIC AND SOFTWARE All 200 Families Families REFERENCE
Mean test Z value:
SIBPAL 14.07 17.56 Haseman and Elston 1972
MLS LOD score (2 df):
SPLINK 36.34 36.34 Holmans 1993
MLS LOD score (1 df):
GeneHunter 22.20 22.20 Kruglyak and Lander 1995
ASPEX sib_phase 22.20 22.20 Hinds and Risch 1996
NPL S, Z score:
GeneHunter 6.70 7.82 Kruglyak et al. 1996
Allegro 7.82 7.82 Gudbjartsson et al. 2000
Merlin 7.82 7.82 Abecasis et al. 2002
GeneHunter-Plus S,; LOD score:
GeneHunter-Plus 22.20 22.20 Kong and Cox 1997
Allegro 22.20 22.20 Gudbjartsson et al. 2000
Merlin 22.20 22.20 Abecasis et al. 2002

statistics. The “perfect data approximation” performs
well if most of the families are informative for IBD shar-
ing, but, as the proportion of uninformative families
increases, it becomes increasingly conservative, leading
to a loss of power (Kruglyak et al. 1996). In fact, the
loss of power due to “bias” that Schork and Greenwood
(2004) identify is, mathematically, exactly the same
thing as the loss of power due to the “perfect data
approximation.”

The negative effects of the “perfect data approxima-
tion” can be illustrated by a simple example. Consider
the sib-pair IBD-sharing statistic

S — 1/2)

i
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where m; is the estimated proportion of alleles shared
IBD for the ith affected sib pair. Suppose we have two
data sets: (1) 50 fully informative affected—sib-pair fam-
ilies and (2) 50 fully informative and 50 uninformative
families. Suppose w; in our fully informative families
takes on the values 0, 1/2, and 1, with probabilities
1/8, 1/2, and 3/8, respectively, whereas =; is 1/2 in our
uninformative families. The numerator of the statistic is
identical for both data sets. However, different ap-
proaches to computing the variance in the denominator
can lead to different statistic values for the two data sets.
Under the “perfect data approximation,” the value of
the statistic is 2.50 for the first data set and 1.77 for the
second data set—an undesirable reduction in the ev-
idence for linkage. Use of the correct variance (given
that the number of uninformative families remains con-

stant) leads to statistic values of 2.50 for both data sets.
Another option is to use the empirical variance, which
reflects the alternative hypothesis rather than the null
hypothesis and can be quite powerful; the empirical
variance gives an expected IBD-sharing statistic of 2.50
for both example data sets. A score test using empirical
variances was one of the best statistics in a recent eval-
uation of methods for QTL mapping using selected sib-
ling pairs (T.Cuenco et al. 2003).

To avoid the negative consequences of using the “per-
fect data approximation,” Kong and Cox (1997) pro-
posed a nonparametric statistic that performs much better
in the presence of uninformative families. This statistic
has been implemented in GeneHunter-Plus (Kong and
Cox 1997), Allegro (Gudbjartsson et al. 2000), and Mer-
lin (Abecasis et al. 2002) and, as illustrated by our simple
simulation experiment in table 1, is insensitive to the
presence of fully uninformative families. Similarly, in the
context of the Haseman-Elston (HE) test (Haseman and
Elston 1972), in which trait values are regressed on IBD
sharing, the problem of using estimated IBD sharing
has long been recognized. For example, Kruglyak and
Lander (1995) developed a missing-value regression ap-
proach to compute a modified HE test that has much
better behavior in the presence of uninformative families
than the original test.

Whereas it is always useful to remind the scientific
community that proper statistical analyses of linkage
data requires deep insight into the potential weaknesses
of the chosen methodology and software implementa-
tion, we feel that Schork and Greenwood’s concerns are
overstated. Indeed, as we have shown, not only has this
potential problem been known since at least the mid-
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1990s, but, in addition, the majority of implementations
of linkage statistics in commonly used software do not
suffer from this “bias” toward the null hypothesis in the
presence of uninformative families. Furthermore, the use
of highly informative markers in a multipoint analysis
will result in very few families being fully uninformative
for IBD sharing.
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Conventional Multipoint Nonparametric Linkage
Analysis Is Not Necessarily Inherently Biased

To the Editor:
Schork and Greenwood (2004) recently reported that
there is an inherent bias toward the null hypothesis in
conventional multipoint linkage analysis in which ex-
pected values are used for allele sharing between relatives
when, in fact, there is no information on their identity-
by-descent (IBD) sharing status. The implications of
Schork and Greenwood’s results are serious, because
they suggest that the power of detection of disease genes
or QTLs is compromised. Here, we show that their re-
sults are based on a comparison of test statistics that
have different variance (and, therefore, have different
distribution) and so should not be compared directly and
that the usual way in which inference is made from mul-
tipoint nonparametric linkage is, in fact, correct. In ad-
dition, we demonstrate that, for linkage analysis of
quantitative traits, the effect of mixing informative and
uninformative sib pairs on the test statistic is very small
and very unlikely to be of practical importance.
Schork and Greenwood (2004) use the analogy of a
coin-tossing experiment to make their main point, and
we use the same experiment to contest their conclusion.
Suppose a coin is tossed 100 times to test the hypothesis
that it is fair (i.e., that it gives a 1:1 ratio of heads to
tails). The outcome of the experiment is observed in only
50 tosses, and, of those 50 tosses, 40 are heads. The
estimate of the probability of heads (p) from the obser-
vation that 40 of 50 observed tosses are heads is thus
0.80. If we assign the expected values (under the null
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